Generic Julia Set Plotter (version 8.2)
This is an extension of our previous Julia Set (J-set) plotters. The iteration functions F(z,c) are extended from simple "z^n+c" to polynomial functions, rational functions, transcendental functions, and composition of them. This is a simple J-Set Plotter based on escape-time or jump-iteration-number. The plotter divides the points on the complex plane into two groups, bounded points and escaped points, and thus for polynomial functions, the bounded point set is actually filled-in Julia set. The mathematically strict Julia set is the boundary of the filled-in Julia set and escaped point set.
Although, for some functions used in this plotter, the produced J-set may not meet the classic J-set definition in a strict mathematical sense, they can still produce fancy patterns and images. In these cases, J-set images may be sensitive to the Escape Radius, and the Max Iteration number. This plotter gives more options open to the user and thus makes it a more flexible experimental tool. Because the mathematical strictness are sometimes compromised, we may call this experimental tool as a Generic J-Set Plotter.
For every iteration function F(z,c), and every point on the complex plane c(xc,yc), there is a J-set image. That is, for a selected iteration function F(z,c), the plotter can generate different J-set for different selected point c(xc,yc).Quickstart:
- Click "Run/Re-Run Plotter" button to plot the default J-set image.
- Plot a new J-set by right-clicking OR holding the Shift key and left-clicking on the image area, which selects a new c(xc,yc) point.
- On a touch-screen device, tap on the image area to select a new c(xc,yc) point.
- To zoom in on an area of the image, hold down the left button and drag a selection with your mouse.
- Change "F(z,c)" with the select menu to explore 146 different iteration functions or composition functions.
- Further explore the image by changing the "Escape Radius", "Max Iteration","Hue(Color)", and "Plot Size" options.
→ CLICK HERE TO [ SHOW ] MORE USAGE INFORMATION
More Information for this Generic Julia Set Plotter is at the end of this page.Restart/Reload This Web Page
M/J Color, Non-M/J Hue & Lightness Ranges:
(R,G,B,Hmin,Hmax,Lmin.Lmax):
Escape Radius:Max Iteration:Plot Size:Worker Number:
F(z,c):Hue(Color):Keep Graph Shape or Not:
Click "Run/Re-Run Plotter" Button to Start
A(z)=???
B(z)=???
Input Parameter a[i]=(a0,a1,a2,a3,,,,) for Polynomial Function A(z):Input Parameter b[i]=(b0,b1,b2,b3,,,,) for Polynomial Function B(z):C(xc,yc) Position on the Complex Plane---xc and yc:
Set Init/Default Plot Range X Y MaxMin:
X Plot Range---xmin and xmax:Y Plot Range---ymin and ymax:
More Information for the J-set/Multijulia sets Plotter:
The J-set is generated by iteration of a complex equation:
`z(n+1)=F(z(n),c(xc,yc))`
For J-set plotting, c(xc,yc) is constant for a image plot session.
Using a point z0(x0,y0) on the complex plane as the initial condition for the iteration, with designated iteration parameters of a maximum iteration number, a escape radius, and an iteration condition abs(z(n))<=escape radius:
If the iteration reaches the maximum iteration number, the z0(x0,y0) point is defined as a member of filled-in J-set or bounded set;
If during the iteration, the condition abs(z(n))<=escape radius fails, the iteration is stopped and the point is then defined as a non-J-set point or escaped point.
The escape or jump iteration number, denoted as Jmp for each non-J-set point, represents the property of the point. Coloring each escaped point according to its Jmp value will produce a colorful and beautiful J-set image or pattern.
This plotter provides 24 types of simple coloring/rendering algorithms and they are displayed in the Hue(Color) selection menu.
0. Hue(Color)="((Jmp-Min)*360)/(Max-Min)"
1. Hue(Color)="((Jmp-Max)*360)/(Min-Max)"
2. Hue(Color)="(Jmp/IteMax)*360"
3. Hue(Color)= "((IteMax-Jmp)/IteMax)*360"
4. Hue(Color)= "Jmp"
5. Hue(Color)= "IteMax-Jmp"
6. Hue(Color)= "((2*Jmp+10)/IteMax)*360"
7. Hue(Color)= "((Jmp/IteMax)*360)^2%360"
8. Hue(Color)="((Jmp-Min)*120)/(Max-Min)"
9. Hue(Color)= "120+((Jmp-Min)*120)/(Max-Min)"
10. Hue(Color)="240+((Jmp-Min)*120)/(Max-Min)"
11. Hue(Color)= "240+((Jmp-Max)*120)/(Min-Max)"
12. Hue(Color)= "120+((Jmp-Max)*120)/(Min-Max)"
13. Hue(Color)= "((Jmp-Max)*120)/(Min-Max)"
14. "H=Hmin,L=Lmin->Lmax"
Hue(Color)=Hmin
Lightness =lmin+((Jmp-Min)*(lmax-lmin))/(Max-Min); //L=Lmin->Lmax
15. "H=Hmin,L=Lmax->Lmin"
Hue(Color)=H=Hmin
Lightness=lmin+((nJmp-Max)*(lmax-lmin))/(Min-Max); //L=Lmax->Lmin
16. "H=Hmin->Hmax,L=Lmin->Lmax"
Hue(Color)=Hmin+((Jmp-Min)*(Hmax-Hmin))/(Max-Min);//H=Hmin->Hmax
Lightness=lmin+((Jmp-Min)*(lmax-lmin))/(Max-Min); //L=Lmin->Lmax
17. "H=Hmin->Hmax,L=Lmax->Lmin"
Hue(Color)=Hmin+((Jmp-Min)*(Hmax-Hmin))/(Max-Min);//H=Hmin->Hmax
Lightness=lmin+((nJmp-Max)*(lmax-lmin))/(Min-Max); //L=Lmax->Lmin
18. "H=Hmax->Hmin,L=Lmin->Lmax"
Hue(Color)=Hmin+((nJmp-Max)*(Hmax-Hmin))/(Min-Max);//H=Hmax->Hmin
Lightness=lmin+((Jmp-Min)*(lmax-lmin))/(Max-Min); //L=Lmin->Lmax
19. "H=Hmax->Hmin,L=Lmax->Lmin"
Hue(Color)=Hmin+((nJmp-Max)*(Hmax-Hmin))/(Min-Max);//H=Hmax->Hmin
Lightness=lmin+((nJmp-Max)*(lmax-lmin))/(Min-Max); //L=Lmax->Lmin
20. "H=7th Hue,L=Lmin->Lmax"
Hue(Color)="((Jmp/IteMax)*360)^2%360"
Lightness=lmin+((Jmp-Min)*(lmax-lmin))/(Max-Min); //L=Lmin->Lmax
21. "H=7th Hue,L=Lmax->Lmin"
Hue(Color)="((Jmp/IteMax)*360)^2%360"
Lightness=lmin+((nJmp-Max)*(lmax-lmin))/(Min-Max); //L=Lmax->Lmin
22. Hue(Color)="((Jmp/IteMax)*360)^4%360"
23. Hue(Color)="((Jmp/IteMax)*360)^8%360"
where, IteMax = "maximum iteration number",
Max = maximum of Jmp of the non-J-set points or escaped points for the current/plotted image,
Min = minimum of Jmp of the non-J-set points or escaped points for the current/plotted image,
Hmax, Hmin, Lmax, and Lmin are user input color and lightness parameters,
default Lightness=0.5.
The following wikipedia link provides more Information for the Julia set:
https://en.wikipedia.org/wiki/Julia_set
https://en.wikipedia.org/wiki/Complex_dynamics
https://en.wikipedia.org/wiki/Escaping_set
https://en.wikipedia.org/wiki/Newton_fractal
https://en.wikipedia.org/wiki/Filled_Julia_set