Math on the Cloud
FacebookTwitterInstagram

Generic Julia Set Plotter (version 8.2)

This is an extension of our previous Julia Set (J-set) plotters. The iteration functions F(z,c) are extended from simple "z^n+c" to polynomial functions, rational functions, transcendental functions, and composition of them. This is a simple J-Set Plotter based on escape-time or jump-iteration-number. The plotter divides the points on the complex plane into two groups, bounded points and escaped points, and thus for polynomial functions, the bounded point set is actually filled-in Julia set. The mathematically strict Julia set is the boundary of the filled-in Julia set and escaped point set.

Although, for some functions used in this plotter, the produced J-set may not meet the classic J-set definition in a strict mathematical sense, they can still produce fancy patterns and images. In these cases, J-set images may be sensitive to the Escape Radius, and the Max Iteration number. This plotter gives more options open to the user and thus makes it a more flexible experimental tool. Because the mathematical strictness are sometimes compromised, we may call this experimental tool as a Generic J-Set Plotter.

For every iteration function F(z,c), and every point on the complex plane c(xc,yc), there is a J-set image. That is, for a selected iteration function F(z,c), the plotter can generate different J-set for different selected point c(xc,yc).

Quickstart:
  • Click "Run/Re-Run Plotter" button to plot the default J-set image.
  • Plot a new J-set by right-clicking OR holding the Shift key and left-clicking on the image area, which selects a new c(xc,yc) point.
  • On a touch-screen device, tap on the image area to select a new c(xc,yc) point.
  • To zoom in on an area of the image, hold down the left button and drag a selection with your mouse.
  • Change "F(z,c)" with the select menu to explore 146 different iteration functions or composition functions.
  • Further explore the image by changing the "Escape Radius", "Max Iteration","Hue(Color)", and "Plot Size" options.

→ CLICK HERE TO [ SHOW ] MORE USAGE INFORMATION

1. Click "Run/Re-Run Plotter" button to start, the plotter will display a J-set for a pre-defined F(z,c) and c(xc,yc) point.

2. Then, you can select a different c(xc,yc) point inside the "Plot Area" using one of the following methods:
  • use mouse "right" button.
  • use mouse "left" button + "shift key", if your mouse does not have a right button.
  • for a "Touch Screen" device, just "touch" at the point you want to selected.
  • manually input xc and yc values into the text boxes, and then click "Run/Re-Run Plotter" button.

The following operations are similar to that of the M-set plotter.

3. You can use the Mouse Left button(down-move-up) to select a specific portion of the image to zoom-in.
For "Touch Screen Device", J-set plotter currently does NOT provide zoom-in function.

4. The Zoom-In operation can be repeated/iterated to see more details of an image area.
The "Zoom-out/Back" button can be used to reverse the Zoom-In operation step by step.
At any zoom-in stage, the user have options to:
  • select a larger "Max Iteration" number to increase the image resolution,
  • select different "Hue(Color)" algorithms to signify different aspects of image details,
  • select different "Escape Radius" to explore its effect on the image,
  • change the "Plot Size" to get a bigger size and higher resolution image,
  • use "Reset/Init" button to jump back by one step to the initial stage and displays the whole image again,
  • input a number in text box "Set Init/Default Plot Range" and press "Reset/Init" button to increase the plot range, if the image is larger than the canvas.
  • or, select a different F(z,c) function to start a new plot session.

5. In theory, the J-set image zoom-In levels can be infinite, whereas the actual zoom-in levels of this plotter are limited by its accuracy.
A fuzzy image, and/or the displayed mouse (x, y) position showing no or little change reached its accuracy limit.
r(x,y) is the distance between current mouse position and the origin point (0,0).

6. J-set sets plotting can sometimes be computation intensive. Combination of a big "Max Iteration" number, a large "Plot Size", and a high order(degree) F(z,c), can trap the plotter in a long time calculating status.
In this situation, if you do not like waiting, you can click on the "Restart/Reload This Web Page" link to stop the running plotter and start a new session.
More Information for this Generic Julia Set Plotter is at the end of this page.
Restart/Reload This Web Page

M/J Color, Non-M/J Hue & Lightness Ranges:
(R,G,B,Hmin,Hmax,Lmin.Lmax):
Escape Radius:Max Iteration:Plot Size:Worker Number:
F(z,c):Hue(Color):

Keep Graph Shape or Not:

Click "Run/Re-Run Plotter" Button to Start
A(z)=???
B(z)=???

Input Parameter a[i]=(a0,a1,a2,a3,,,,) for Polynomial Function A(z):
Input Parameter b[i]=(b0,b1,b2,b3,,,,) for Polynomial Function B(z):
C(xc,yc) Position on the Complex Plane---xc and yc:

Set Init/Default Plot Range X Y MaxMin:
X Plot Range---xmin and xmax:

Y Plot Range---ymin and ymax:

More Information for the J-set/Multijulia sets Plotter:


The J-set is generated by iteration of a complex equation:
`z(n+1)=F(z(n),c(xc,yc))`
For J-set plotting, c(xc,yc) is constant for a image plot session.

Using a point z0(x0,y0) on the complex plane as the initial condition for the iteration, with designated iteration parameters of a maximum iteration number, a escape radius, and an iteration condition abs(z(n))<=escape radius:
If the iteration reaches the maximum iteration number, the z0(x0,y0) point is defined as a member of filled-in J-set or bounded set;
If during the iteration, the condition abs(z(n))<=escape radius fails, the iteration is stopped and the point is then defined as a non-J-set point or escaped point.

The escape or jump iteration number, denoted as Jmp for each non-J-set point, represents the property of the point. Coloring each escaped point according to its Jmp value will produce a colorful and beautiful J-set image or pattern.

This plotter provides 24 types of simple coloring/rendering algorithms and they are displayed in the Hue(Color) selection menu.

0. Hue(Color)="((Jmp-Min)*360)/(Max-Min)"
1. Hue(Color)="((Jmp-Max)*360)/(Min-Max)"
2. Hue(Color)="(Jmp/IteMax)*360"
3. Hue(Color)= "((IteMax-Jmp)/IteMax)*360"
4. Hue(Color)= "Jmp"
5. Hue(Color)= "IteMax-Jmp"
6. Hue(Color)= "((2*Jmp+10)/IteMax)*360"
7. Hue(Color)= "((Jmp/IteMax)*360)^2%360"
8. Hue(Color)="((Jmp-Min)*120)/(Max-Min)"
9. Hue(Color)= "120+((Jmp-Min)*120)/(Max-Min)"
10. Hue(Color)="240+((Jmp-Min)*120)/(Max-Min)"
11. Hue(Color)= "240+((Jmp-Max)*120)/(Min-Max)"
12. Hue(Color)= "120+((Jmp-Max)*120)/(Min-Max)"
13. Hue(Color)= "((Jmp-Max)*120)/(Min-Max)"

14. "H=Hmin,L=Lmin->Lmax"
Hue(Color)=Hmin
Lightness =lmin+((Jmp-Min)*(lmax-lmin))/(Max-Min); //L=Lmin->Lmax
15. "H=Hmin,L=Lmax->Lmin"
Hue(Color)=H=Hmin
Lightness=lmin+((nJmp-Max)*(lmax-lmin))/(Min-Max); //L=Lmax->Lmin
16. "H=Hmin->Hmax,L=Lmin->Lmax"
Hue(Color)=Hmin+((Jmp-Min)*(Hmax-Hmin))/(Max-Min);//H=Hmin->Hmax
Lightness=lmin+((Jmp-Min)*(lmax-lmin))/(Max-Min); //L=Lmin->Lmax
17. "H=Hmin->Hmax,L=Lmax->Lmin"
Hue(Color)=Hmin+((Jmp-Min)*(Hmax-Hmin))/(Max-Min);//H=Hmin->Hmax
Lightness=lmin+((nJmp-Max)*(lmax-lmin))/(Min-Max); //L=Lmax->Lmin
18. "H=Hmax->Hmin,L=Lmin->Lmax"
Hue(Color)=Hmin+((nJmp-Max)*(Hmax-Hmin))/(Min-Max);//H=Hmax->Hmin
Lightness=lmin+((Jmp-Min)*(lmax-lmin))/(Max-Min); //L=Lmin->Lmax
19. "H=Hmax->Hmin,L=Lmax->Lmin"
Hue(Color)=Hmin+((nJmp-Max)*(Hmax-Hmin))/(Min-Max);//H=Hmax->Hmin
Lightness=lmin+((nJmp-Max)*(lmax-lmin))/(Min-Max); //L=Lmax->Lmin
20. "H=7th Hue,L=Lmin->Lmax"
Hue(Color)="((Jmp/IteMax)*360)^2%360"
Lightness=lmin+((Jmp-Min)*(lmax-lmin))/(Max-Min); //L=Lmin->Lmax
21. "H=7th Hue,L=Lmax->Lmin"
Hue(Color)="((Jmp/IteMax)*360)^2%360"
Lightness=lmin+((nJmp-Max)*(lmax-lmin))/(Min-Max); //L=Lmax->Lmin
22. Hue(Color)="((Jmp/IteMax)*360)^4%360"
23. Hue(Color)="((Jmp/IteMax)*360)^8%360"

where, IteMax = "maximum iteration number",
Max = maximum of Jmp of the non-J-set points or escaped points for the current/plotted image,
Min = minimum of Jmp of the non-J-set points or escaped points for the current/plotted image,
Hmax, Hmin, Lmax, and Lmin are user input color and lightness parameters,
default Lightness=0.5.

The following wikipedia link provides more Information for the Julia set:

https://en.wikipedia.org/wiki/Julia_set
https://en.wikipedia.org/wiki/Complex_dynamics
https://en.wikipedia.org/wiki/Escaping_set
https://en.wikipedia.org/wiki/Newton_fractal
https://en.wikipedia.org/wiki/Filled_Julia_set

Math on the Cloud/fractal/juliageneric
©Math on the Cloud 2022-2024. Read our Privacy Policy and Terms & Conditions